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ABSTRACT 

Early reionization changes the pattern of anisotropies expected in the cosmic mi- 

crowave background. To explore these changes, we derive from first principles the equations 

governing anisotropies, focusing on the interactions of photons with electrons. Vishniac 

(1987) claimed that second order terms can be large in a re-ionized Universe, so we derive 

equations correct to second order in the perturbations. There are many more second order 

terms than were considered by Vishniac. To understand the basic physics involved, we 

present a simple analytic approximation to the first order equation. Then turning to the 

second order equation, we show that the Vishniac term is indeed the only important one. 

We also present numerical results for a variety of ionization histories [in a standard cold 

dark matter Universe] and show quantitatively how the signal in several experiments de- 

pends on the ionization history. The most pronounced indication of a re-ionized Universe 

would be seen in very small scale experiments; the expected signal in the Owens Valley 

experiment is smaller by a factor of order teu if the last scattering surface is at a redshift 

z N 100 as it would be if the Universe were re-ionized very early. On slightly larger scales, 

the expected signal in a re-ionized Universe is smaller than it would be with standard 

recombination, but only by a factor of two or so. The signal is even smaller in these 

experiments in the intermediate case where some photous last scattered at the standard 

recombination epoch. 
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1. Introduction 

Measurements of the cosmic microwave background (CMB) are very powerful probes 
of theories of structure formation. Even the so-called “medium-angle” CMB experiments 
are looking at scales larger than those in the largest redshift surveys. This means that 
CMB observations are some of the purest observations in the field: more than any other 
type of experiment they sample the primordial spectrum of fluctuations. We can therefore 
hope to use the CMB experiments to answer many questions about primordial fluctuations: 
Are they Gaussian? What is the spectral index? Are they adiabatic or isocurvature? Do 
gravity waves play any role? 

These are profound questions and the possibility that we might answer them is one 
of the great promises of observational cosmology. However. there are several flies in the 
ointment. Perhaps most disturbing is foreground: our galaxy has lots of dust, synchrotron 
and free-free emission. All of these can get in the way of detecting the purely cosmic 
radiation. Another potential barrier to inferring the primordial spectrum from CMB mea- 
surements - and the one we wish to focus on here - is the possibility of reioniration. In the 
standard cosmology the electrons and protons .‘recombine” at redshift z 2 1100. thereby 
cutting off contact between photons and matter. However, it is possible that hydrogen was 
‘Ye-ionized” at a later epoch. The subsequent contact between photons and free electrons 
changes the pattern of anisotropies in the CMB. Thus we ccm use the CMB to infer the 
ionization history of our Imiverse. As we have said, knowing this history is crucial for 
the sake of determining the primordial spectrum, hut it is also interesting in of itself. For 
example, if we determine that the Universe was ionized at a redshift z N 100. we will have 
learned something very useful about structure at that epoch. 

In this paper. we would like to quantify these statements with particular attention to 
experiments. The simplest way to discuss anisotropies in the CMB is in 1- space (Bond 
et al. 1991). That is, we expand 6T(B,b)/T = C Im w,L(@, 4) ad define Cl = (lm,l*), 
where the angular brackets denote ensemble averages. Each theory has its own set of 
predicted Cl’s and therefore predicts that a given experiment will observe a variance 

((ATP’k,,) = g ~WK.ex,t 

where Wl is the window function appropriate to that experiment. 
Figure 1 shows the window functions of a variety of experiments. For large 1. the 

expected variance in a given experiment is seen from Eq. (1.1) to be roughly 1/2?r 
J din(l) (E2Cl)Wl. So the quantity (12Cl) is convolved with the window function to give 
the expected variance. Figure 2 plots the 1’Cl predicted by cold dark matter (CDM) with 
standard ionization history. The peak at I = 200 is probed by several of the experiments 
shown in Figure 1. 
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FIG. 1. Window functions for several experiments currently searclGi!g for anisotropies in the cosmic 

microwave background. The curve labeled SP91 denotes the filter for the ACME telescope for the nine- 

point scan of 1991 (G&r et al. 1992) in the South Pole: TENERIFE the one used by Davies et al. (1987) 

at Tenerife: MAX the filter used by M&hold et al. (1993) in the region uf P-Pegasus: OVRO the filter 

used at Owens Valley (Readhead et al. 1989). For reference the COBE (Smoot et al. 1992) filter is also 

plotted. 

We want to know how the Cl’s change if the Universe is re-ionized. Is there still a peak 
at 1 = 200? Does the amplitude change? Does the peak move. perhaps to lower or higher 
11 Or both? To answer these questions we derive the fundamental Boltzmann equation 
governing the interaction between photons and electrons, the interaction that. as we will 
see, is responsible for the peak in Fig. 2. This derivation is presented in sections in what we 
think is a very systematic way. One of the advantages of this systematic treatment is it will 
enable us to pick up not only the linear terms [which of course have already been derived 
many times (Peebles & Yu 1970; Wilson & Silk 1981)] but also the second order terms. 
These are of particular interest because Vishniac (1987) has analyzed one such second 
order term and concluded that in a reionized Universe, anisotropies are generated at small 
scales [high 11. By introducing this systematic treatment of the Boltzmann equation, we 
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predicted by CDM with standard recombinativn. The quantity FIG. 2. The plotted l(l + 

l)Cl/6Cs is equal to one at low 1 where only the Sachs-Wolfe effect is significant. In the post-COBE era, 
we know that 1(1 + l)Cl/SC, = l(l + l)Cl/(2.4 x 10-5)2. 

will be able to see if there are other second order terms that are as large as those considered 
by Vishniac. and if cancellations occur. 

First though, in section 4. we solve the first order equations. The focus is on two possi- 
ble ionization histories: the standard scenario wherein electrons and protons recombine at 
.Z N 1100 with no further ionization and the opposite extreme wherein electrons remain free 
throughout the whole history of the Universe. In addition to presenting the results of a full 
numerical treatment, we also solve the equation [or an approximation to it] analytically to 
gain insight into the location of the peak in I- space. We find that this peak shifts to lovrer 
1 if the Univers,e is re-ionized early enough. If the Universe never recombines. then there 
is a peak at 1 - 50. The signal in an experiment with a filter centered around this value of 
I would see a larger signal in a completely re-ionized Universe than in one with standard 
recombination. We also show why PCr falls off at high 1. This will lead into a discussion of 
the second order terms expected to be important. Sections 5 and 6 use this information to 
complete the derivation of the second order Boltzmann equation and present the solution, 
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Our techniques are similar to those of Efstathiou (1988). In particular we will recapture 
Vishniac’s result and show that the term he identified is indeed the dominant one. Thus 
2ue support Vishniac’s conclusions about second order effects. Finally in section 7. we get 
more specific about experiments. presenting the predicted ((XF/T)&,,) in a variety of 
experiments for a variety of ionization histories. 

One final introductory comment: The signal from the cosmic background depends on 
many parameters even in a model as simple as CDM. For example. the spectral index R 
need not be equal to one. and even a slight deviation h<a.s dramatic implications for the small 
and medium scale measurements. The signal in a given experiment also depends (Bond 
et al. 1991: Dodelson & Jubas 1993) on Rn, the fraction of critical density in baryons 
today, and h which parametrizes the Hubble constant today (Ho = 100hkn~sec-lMpc-‘). 
And of course, models other than CDM give different predictions and have different sets of 
parameters to fiddle with. Here we are focusing only on the impact of different ionization 
histories. It therefore makes sense to fix all these other parameters and play with the one 
variable of interest: the ionization history. Accordingly. we will focus only on a cold dark 
matter dominated Universe with Harrison-Zel’dovich spectrum (n = 1) and set h = l/2 
and 028 = 0.05. Several other groups (Bond XL Efstathiou 1987: Efstathiou 1988: Hu. Scott, 
& Silk 1993) have recently considered the effects of re-ionization for other cosmologies, in 
particular the minimal isocurvature model proposed by Peebles (1987). 

2. Compton Collision Term: A General Derivation 

The photon spectrum is governed by the Boltzmann eqliation: 

-$f(x.p.t) = C(x.p.t). (2.1) 

Here f is the photon occupation number. a function of momentum p, position x. and 
time t. The collision term? C, also depends on these variables. Theoretically, it includes 
contributions from all scattering processes. although in practice only Compton scattering 
off free electrons need be considered. 

In the absence of collisions [C = 01, Eq. (2.1) says simply that photons travel freely 
along geodesics. For example, in a Robertson- Walker background, the left hand side of 
Eq. (2.1) becomes 

df 
z= 1 

g+;-&-bg f(x,Ptt) 
I 

(2.2) 

where H is the Hubble rate and p = IpI. If we are interested in large scale anisotropies. we 
must do better: we must account for the perturbed metric when expanding d/dt in terms 
of partial derivatives. Such an account leads to the Sachs-Wolfe effect (Sachs & Wolfe 
1967). [Recently, Martinez-Gonzalez, etal. (1992) have taken this program a step further 
and considered second order effects in the perturbations to the metric.] 

In this paper we will focus on the right hand side of Eq. (2.1): the collision term. This 
term governs small scale anisotropies and spectral distortions. In the limit of completely 
elastic collisions, the right hand side vanishes. Typically, in the regime of interest. very 
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little energy is imparted from electrons to photons in a collision. so this limit is a good 
approximation. To get non-zero effects. therefore. we simply need to expand the right 
hand side systematically in powers of the energy transfer. 

The starting point then is the collision term corresponding to the process 

e(qMP) - e(dMP') 

To calculate this. we find the matrix element M for the process. square it. weight it by 
the occupation numbers of the particles and integrate over all other momenta, q, q’, p’. 
Therefore. 

d3q’ d3p’ 
c(p) = :J (2i$k(,) (2x)32E(q’) (27T)32E(p’) (2TJ4h4(4 + p - q’ - p’)lM12 

x [R(dIfIP++flPI) - dqJflPi(l+fip7)] 

where E(q) = dn and the delta function enforces energy-momentum conservation. 
The last line in Eq. (2.3) contains the distribution functions, f that of the photons and g 
the electrons. We have dropped the Pauli suppression factors 1 - g, since in all realistic 
cosmological scenarios, g is very small. We don’t know f [that is what we are trying to 
solve for]’ but we do know g: Due to the fast rate of Coulomb collisions, the electrons are 
kept in thermal equilibrium. so 

g(9) = ne ($$-)3’2exp{-(~~~~v)z}. (2.4) 

where v is the velocity of the electrons and the normalization comes from requiring that 
s d3q g/&J3 = ne, the electron density. Before beginning the expansion, we can trivially 
do the q’ integration in Eq. (2.3) by using the three dimensional delta function. This 
leaves 

C(P) = &++w~J* W” t(p+iqq)-p~-E(p+q-py) 
WI3 ~(W(P+q- P') 

x dPfcl-P7f(Po(l+f(P)) 
1 

- L7wf(P)(l+flP~~)] 

As mentioned above, the energy transfer, E(q) - E(q + p - p’), is small compared 
with the typical thermal energies which are of order T. In fact, the energy difference is of 
order E(q)-E(q+p-p’) = (p’-p).q/ m, = O(Tq/m,). Thus our expansion parameter, 
the energy difference over the temperature, is actually q/m,. The electron momentum hns 
two sources: the bulk velocity (q = m,v) and the thermal motion (q - a). Thus, 
an expansion in q/m, is necessarily an expansion in v and fi. At the end of our 
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expansion we will have a first order source term linear in u and a host of second order 
terms quadratic in u and m. 

The strategy now is to expand everything - energies, squared matrix element, delta 
function and distribution functions using the energy transfer as an expansion parameter. 
The Boltzmann distribution expands to 

g(P+q-p’)=g(q) 1- (p--Pljnyv) _ ‘“,,$” 

1 e e e e 

(P-P’).(9--mv) *+,,,‘I 
m,T, 1 I (2.6) 

The second term in brackets is first order in the perturbative quantities while the last two 
are second order. Meanwhile the delta function expands to 

(P - P’) 9 WP - p’) 
I 

+ (P - P’)* 
2me (2.7) 

The derivatives of the Dirac delta functions here will ultimately be handled by integration 
by parts. [Bernstein (1988) introduced this approach to derive the Kompaneets equation 
which, as will see in section 5, is a special case of the general second order equation.] 
Finally, we expand the photon distribution function, 

f = f’“‘(P) + f(')(P) + f'*'(P) (2.8) 

where f(O)(p) is the zero order photon distribution [typically Planckian] which of course 
depends only on the magnitude of p. We can use these three expansions to rewrite Eq. 
(2.5) as 

C(P) = & Jdpfp$ J&L IM12dq) 
(2’rx)3 E(q)@ + q - p’) 

6cp-p,)+ ip-;yw-/‘) 

+ (P - P’Y =(P - P’) 
2m, 

ap, +I['P-~~).q]*a*6~~Pl)} 

x 
1 

[f’O’(P’) - f’O’(p)] + [f”‘(p’) -f(‘)(p) - f’O’(p’)(l+ f’yp))(P - p’L(; -,.“)I 
e e 

+ 
[ 
f’*‘(p’) - f@‘(p) - (p-p’;; - mev) (fyp’)(l + f@‘(p)) + f’yp’)f(yp)) 

e e 

+ f’yp’)(l + f’yp)) ( -‘z’mlg)2 + ;( (p - “‘kg- mev) * 01) (2.9) 
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This equation looks like a mess. and we have not even expanded all the quantities on the 
first line yet. It turns out though that the hard part is over. We now recognize that 
the zero order term in Eq. (2.9), i.e. the one we get when multiplying together the first 
terms in each of the curly brackets. vanishes. That is. 6(p - p’)( f (O)(p) - f (O’(p’)) is zero. 
Therefore only terms of first order remain after multiplying all the terms in the two curly 
brackets. This means that [since we are interested only in terms up to second order] we 
only have to keep first order terms when we expand the matrix element and the energies 
on the first line. In fact to first order the energies can be simply replaced by m,. and the 
matrix element squared is 

IMl* = 6nuTrna ((1 + cos*B) - 2cosB(l - cosO)q (i, + @‘)/me + .) (2.10) 

where co&’ = P P’ and ok is the Thomson cross section. To simplify things further, 
we can explicitly do the d3q integral by using (g) = n,; (gq) = n,m,v; and (gqiqj) = 
&jn,m.T, + n,maU;uj. where (A) = sd3q A/(~T)~. Then we find 

C(p) =y Jdp’p’~ [c%,p’j + cg’(p,py + cg’(p,py 

where the first order integrand is 

+&P: P’) + CYP, P’) “V . 1 (2.11) 

c(‘)(p,p’) = (l+ co2fl) 
( 

b(p - p’)(f(‘)(p’) - f(l)(p)) 

+ (f’O’(p’) - f’O’(p))(p - p’) ?-(P - P’) 

) 
; (2 12) 

dp’ . 

and we have separated the second order terms into four parts. The first set of these 
contribute to what is referred to as the Kompaneets equation (Kompaneets 1957) describing 
spectral distortions to the CMB (Bernstein & Dodelson 1990): 

gyp, p’) = (1 + co&) (P - PI)* 2m e (f”‘(p’) - f”‘(p)) Tea2ak,;P’) 

- (f’O’(*‘)+f(“)(p)+2f(o)(P’)f(o)(P)) a6(;;p’) 1 
+ 2(p - p’)codJ( 1 - cos28) 

me [ 
a(~ -p’)f(“)(p’)(l + f”‘(p)) 

- (f’yp’) - f’yp)) a6(pgp;p’) . 1 (2.13) 
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There is also the simple damping term 

cg)(p,p’) = (1 +cos28) 6(P -P’)(f’2)(p’) - f’*‘(p)); (2.14) 

a set of terms coupling the photon perturbation to the velocity 

cg(p,p’) = (1 +cos*O) (f(“(P’) - f(l)(p)) 
1 

(1 +co&) (p -p’) “06(;-/‘) 

- 2cosB(l - cosO)d(p - p’)(fi + 0’) v 1 ; (2.15) 

and finally a set of source terms quadratic in the velocity: 

ct”?(P>P’) = (f(“)(P’) - f(O)(P)) (P -P’) ‘V (1 +cosQ) 
1 

(P - P’) ” a*&(P - P’) 
2 

ap’* 

- 2cos8(1 - cosO)(P + 0’) ” a6(~ - P’) ap, 1 (2.16) 

We’ll see in the next section that the first order terms, those in Eq. (2.12), reduce to the 
standard first order equation once the p’ and R’ integrals are done. There are a lot of 
second order terms. As we have mentioned, one subset of these terms has already been 
studied: those leading to the Kompaneets equation (Kompaneets 1957). We know that 
Vishniac analyzed a second order term. Which one is it here’? It turns out that he looked 
at none of the second order terms in c (*l [or at least he didn’t write a paper about any of 
them]. Rather. he got yet another second order term by expanding the electron density as 
n, = &(l + 6,) and then multiplying 6, by the first order terms in Eq. (2.12). 

3. First Order Equation 

In this section, we derive the well-known first order equation coupling photons and 
electrons. To do this, we need focus only on the terms in Eq. (2.12). For the angular 
integrals, we choose the polar axis to lie along the direction of the electron velocity, so that 
azimuthal symmetry is maintained. Then n’ is the polar angle defined by n’ G C. PI; we 
also define fi = 3 P. Thus we have 

37%7T 
C(‘)(p) = 7 J dcr dp'p'~ c (yp, p') 

+?/(f(O)(p’) - f(o)(p))a6(Pap;p’) 
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where IJ E Iv/. The dot product 0.P’ is a function of both p’ and 4’. But f(‘)(p’) depends 
only on p’ and p’, not on 4’ because of the azimuthal symmetry. [This is perhaps too 
strong a statement. For many metrics considered by cosmologists. there is an azimuthal 
symmetry so f(l) depends only on the polar angle. There are cosmologies though wherein 
this symmetry is not maintained, so f(r) could well depend on the azimuthal angle. This 
happens for example when tensor perturbations (Crittenden et al. 1993) or cosmic strings 
are present. We will restrict our analysis to cases where the symmetry exists.] To do the 
4’ integral we first rewrite the integrand in terms of Legendre polynomials 

By the addition theorem of spherical harmonics. 

m=2 (2 -m)! Pd6.P’) = c 
m=-2 (2 + m)! P;“(fi. $)P;“(P ~),4+‘-+) 

(3.12) 

(3.13) 

Thus. 

J gP*(gQ-y= Pz(~'c)Pz(&'+)= P,(p)P&L') (3.14) 

To do the ,a’ integrals, it is useful to define the moments of the distribution function: 

h(P) = 1; +wf(P>,I). 

Now we can use the orthonormality of the Legendre polynomials to write 

J 1 dp’ 

-1 
$lf m4P2W) [f(‘)(P’) - f(‘)(P)] = ff)(P’) + ;f~%J’lP2(iL) - f”‘(P,P) 

(3.16) 
The notation at this stage is a bit confusing, so let’s restate it: the superscript refers to 
the order of perturbation theory. Here we are considering the first order correction. The 
subscript refers to the moment of the distribution function; note that the last term in Eq. 
(3.16) has not been integrated over, i.e. still depends on p, so it has no subscript. Eq. 
(3.1) now becomes 

L?)(P’) + ;fj’)(~‘)Fz(i4 - f(‘)(p,/4 

+ vpp (f ‘O’(P’) - f(O)(p)) a6’;; p’) 1 
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The remaining p’ integral can be done. in the first case trivially and in the second by 
integrating by parts. Thus our final expression for the collision term is 

C(‘)(P, P) = TGT 1 fo 
iYf(O) 

(‘) + $)P2({‘) - f(l) - p-&- p’” 1 (3.18) 

It appears as if this collision term is momentum dependent. To get rid of this illusion, it 
is useful to define 

f”‘(P>P). (3.19) 

Then combining the left hand side of the Boltzmann equation from Eq. (2.2) and the right 
hand from Eq. (3.18): the full first order equation is 

[The expansion term in Eq. (2.2) simply forces the zero order distribution function to 
depend on the comoving momentum pa where a is the scale factor. One can then show 
that the expansion term drops out of the first order equation for A.] The subscripts here 
again refer to the moments of A(p) defined just as in Eq. (3.15). Since to first order A 
is independent of photon energy, p, A as defined by Eq. (3.19) is equal to the brightness 
defined aa 

A = S ddf”’ 
J-dpp3f(0)’ 

(3.21) 

4. First Order Solutions 

Now that we have the equations describing the interactions of photons with electrons, 
we can solve them to determine the predicted anisotropies in the cosmic microwave back- 
ground. Figure 2 shows the results of numerically integrating the full set of linear equations 
starting with these initial conditions, assuming standard recombination at t 11 1100. We’d 
like to do two things in this section: First, we would like to understand the peak at I N 200. 
If we understand why it occurs at 1 N 200 when the Universe follows a standard ionization 
history, then we will be able to understand how this peak shifts when we consider differ- 
ent ionization histories. Second, we would like to understand the damping that occurs at 
I N 1000. We will see that this damping is due to the “finite thickness of the last scattering 
surface.” For a re-ionized Universe, this thickness is much larger, and therefore, damping 
is apparent even on very large scales [much smaller I]. It turns out that understanding the 
physical reason for this damping will give us a clue as to which second order terms are 
likely to be significant. [Due to the crudeness of our approximations, we will not be able 
to account for the oscillations that occur as CC is damped; these are due to acoustic waves 
at the time of recombination.] 
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To understand these features, we will solve a simplified version of Eq. (3.20). First 
note that A depends on position: to account for this. we can Fourier transform it: 

A(x.p,r) = V J d3k ~(k,/1,7)eikphy,i=-l.X, (4.1) 

where liphy&~ = k/a; k being the comoving wavenumber; a the cosmic scale factor; V the 
volume, a factor which drops out of all physical results. Note that because of the azimuthal 
symmetry, A depends only on the magnitude of k and the dot product 1;. i, = ? @ = p. 
Note that the first equality holds here since the velocity is irrotational, meaning that the 
Fourier transform of the velocity is parallel to k. We also define the conformal time 

J t dt’ 
TE - 

0 act’) 

The conformal time today is 

2 
To 7 ~0 = 1.2 x 10 18 set 

(4.2) 

(4.3) 

since we’re assuming a flat: matter, dominated Universe with h = 0.5. The first order 
equation is now 

i+ik/ii=n,q-n(4~ib~) (4.4) 

where the dot denotes derivative with respect to 7. The As and As terms on the right 
hand side of Eq. (3.20) have been neglected. That’s because we are only interested in 
the kick that photons get from the moving electrons [the 4~6 term], the so-called Doppler 
eflect. The Ae, Az terms give rise to what’s sometimes called the intrinsic anisotropy. Also 
we still have not written down the terms that represent the perturbation to the metric. 
These lead to the Sachs-Wolfe effect. So all we should get out of the simplified Eq. (4.4) 
is the Doppler effect. 

Eq. (4.4) is a first order differential equation, whose solution is 

T &k, PL, T) =A(kt P, Tinitiad exp 
1 
ikP(Tinitid - 7) - J dT’n,(T’)OTa(T’) r,.i,i.l T 

+4P J dT’n,(T’)uTa(#)G(k, #)eihP(r’-7) 
r,.iri., 

{J 
7 

x exp - d#‘n,(+‘)6@(7”) 
zl I 

(4.5) 

The first term on the right represents the anisotropies that were initially present and have 
persisted until some late time 7. These are damped out by scattering with electrons, the 
1 n,oTodT’ term in the exponential. If we choose an early enough qnitid, then this integral 
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is always large, and so the initial anisotropies are not important today. We can write Eq. 
(4.5) in a more compact form by setting rinitiai to zero and by defining the visibility function 

-IS 
T 

g(T, 7’) E n.(~‘)u~a(d) exp - dT”ne(T”)UTa(#‘) 
T’ I 

Then we have simply 

J 
T 

A(k, P, T) = 4~ d#G(k,#)g(T, +i”‘(r’--r), 
0 

(4.7) 

The visibility function defined in Eq. (4.6) h as an interesting physical interpretation. 
To see this, first note that som dr’g(co, 7’) = 1, so g is normalized like a probability density. 
In fact, that’s what it is: the probability per unit conformal time that a photon at time r 
was last scattered at time 7’. The visibility function depends on the free electron density 
n,; thus it is particularly sensitive to the ionization history. Figure 3 shows the visibility 
function for two ionization histories: (i) standard recombination at z N 1100 and (ii) the 
case where the electrons remain ionized throughout the whole history of the Universe. In 
the first case recombination happens rapidly, so the “surface of last scattering” is centered 
at .a = 1100 but with a very small width. In the second case, the surface of last scattering 
is centered at z = 100 but is quite wide. To simplify Eq. (4.7) further, we can approximate 
Q as a Gaussian: 

&0,7’) = fiiTR exp 
{ 

(7’ - 7R)2 
- a7i 

1 
(4.8) 

For standard recombination, rn N .0270 while the width of the last scattering surface, 
67~ N .Irn. For no recombination, rR N .08re while 6rn N .06re. 

Our goal is to find out how A depends on the ionization parameters, rR and 5~~. 
With the approximation in Eq. (4.8) we can go further and solve explicitly for A in Eq. 
(4.7). We now have 

A(k, p, 70) = 4p fiiTR oTo dT’C(k, 8)eikf’(r’--ro) exp 
I 

(7’ - TR)2 - 67~ (4.9) 

In a matter dominated Universe, fi grows as 7, so C(r) = C(ro)r/rc. We can also set the 
upper limit of the integral to infinity since the exponential is negligible for r > 70. Then, 

4P’(kt TOTO) -ikpso 1 ’ 
A@, p, To) = Jji7D6TR e -- J i a(b) 0 

O” dTteikpr( 

where we have written 7’ as (l/i)a/a(kp). The integral in Eq. (4.10) contains a lot of the 
physics we are after. 
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FIG. 3. The visibility functions for standard recombination [solid line] and no recombination [dashed line]. 

Figure 4 shows the integrand for two limiting cases: (i) kpL6Tn >> 1 and (ii) k&R << 
1. In the first case [large k], the scale of the perturbation is much smaller than 6rR, the 
width of the surface of last scattering. A photon travelling through the last scattering 
surface travels through many regions where u is positive but an almost equal number of 
regions where 21 is negative. Thus the total contribution to & is small on scales smaller 
than the thickness of the last scattering surface. The second case comes about either 
because k is small [i.e. the scale of the perturbation is large] or p - 0 [i,. C 0: p’. V6 N 
0, the photon is travelling perpendicular to the direction in which the perturbation is 
changing]. Perturbations on large scales do make a large contribution to A since there is 
no cancellation through the last scattering surface. Similarly, there is no cancellation [in 
the integral] if the photon is travelling perpendicular to the gradient of the perturbation. 
[Note though that Eq. (4.10) has a factor of ,u in front which does lead to a cancellation 
for such photons.] In any event, the integral under discussion can be written down in 
terms of Error functions, but for our purposes we will make another approximation which 
will simplify things further. The contribution of the integrand at the lower limit 7’ = 0 is 
suppressed by a factor of e--(TR/6ral’; fo r most realistic ionization histories this will be a 
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FIG. 4. Real part of the integrand of Eq. (4.10). FIG. 4. Real part of the ! integrand of Eq. (4.10). 

pretty small number, so we can extend the lower limit all the way to -cc with little loss 
of accuracy. The remaining integral is then the Fourier transform of a Gaussian, which is 
itself a Gaussian, or 

iDopder(k, ~ ,TO) = 4pG(k,q,) z 1 + 
k/h; 

t- 
27R 1 eiklr(rR-r~)e-(k~6s~f*)’ (4.11) 

where the superscript indicates that this is the perturbation to the photons caused by 
the Doppler effect. Eq. (4.11) clearly illustrates the damping on small scales as we have 
discussed; the damping scale is of order k - 1/6~~. Kaiser (1984) pointed out that since 
the velocity is parallel to k, there is an extra factor of p in front of Eq. (4.11). Thus, 
for example, 6p,/p, = (l/2) s!, dp ADoppler(k, p,q,) cc I/( khR)*. This suppression of 
6p,/p, would be averted if the source term had a component perpendicular to k. The other 
feature of Eq. (4.11) which is of interest is the factor of TR/Te in front. This tells us that the 
later the photons are in contact with the electrons, the greater is the Doppler kick they get. 
But this is what we expect: velocities grow with T, so photons scattering off electrons at 
later times are seeing larger velocities. This simple fact will have surprising consequences, 
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namely, on large scales [before damping sets in] a reionized Uuiverse produces a larger 
signal in the CMB than one which never reionizes! 

What is the contribution of the Doppler effect to the present day anisotropy as mea- 
sured by the Cl’s? Referring back to Figure 2, we see that for 1 < 30 or so, the dominant 
contribution to CI comes from the Sachs-Wolfe effect. for which 1(1 + l)Cl is constant. 
At larger I’s, the Doppler effect becomes relevant. The reason for deriving an analytic 
expression for A Doppler in terms of 6rR and rR is to see when the Doppler effect becomes 
important as we vary the ionization history of the Universe. To calculate the Cl’s, we 
expand A Doppler (k, F, 70) in a series of Legendre polynomials, defining 

&DoPPl=(k, 7o) = 1 
I 2 J _’ dp P~(~)~Dopp’e’(k,~,~o) 1 

Then, Cr is given by: 

pPler = ;lmdk k* (~~f”PPi”(k,~o)~2) 

= El-,, k* (/1/: dpP&)4@(k,To) z + i [7o e] 

2 

x eiklr(rR-ro),-(klrsIR/2)” ) (4.13) 

Here we are using the normalization of Efstathiou, Bond, Sr White (1992). [A good way 
to check normalization is to insure that Cz = (8/m,j) so” dkji(k)P(k)/k*, where P(k) 
the power spectrum is normalized to COBE, so on large scales is proportional to Czk.] 
As a first approximation to C,?opp’er, we’ll assume that only k < 2/&R contribute to the 
k- integrq due to damping, and that for these values of k we can set the exponential 

--(k@r&z) 
Function: 

to one. Then the integral over /I is simply the derivative of a spherical Bessel 

1 ’ a k(k(TR - To)) 2 J dppp~(p)e’“‘(~R-‘o) = f _ 1 a(k(TR - 70)) (-i)' ' (4.14) 
1 

and similarly the term with p2 becomes the second derivative of a spherical Bessel function. 

Also the continuity equation tells us that G(k, TO) = -ikie(k, To)/k2 = -2ikrfe(k,70)/k2~0, 
where 6, is the fractional change in density of the electrons, assumed equal to that of the 
rest of the matter. Thus, the ensemble average is: 

< 15th To)l* >= f& < l&(k, To)12 >= ;;Ei2. (4.15) 

Here P(k) is the COBE normalized power spectrum;for CDM (Efstathiou et al. 1992), 
PcDM(k) = ~C2qfkT2(k) where Cz = 47r(Q~~s/To)*/5 = 9.7 x lo-” and T is the 
transfer function. 

We now have our final result for C,?‘r”er . m terms of a simple one dimensional integral: 

8 TR * cD~PP~- m _ _ 
*~o/hl 

1 -7r OJ dz P(k = z/T~) dj[(z) 6~; d*j,(z) 2 

To” 
-- 

TO dz 
-z- (4.17) 

0 27,,rR dz* 1 
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FIG. 5. l(l + 1)Cr for standard recombination and no recombination. The results of a full numerical 

solution of the coupled Boltzmann equations [solid lines] are compared with the approximate solution given 

in Eq. (4.17) [dashed lines]. 

Figure 5 shows this approximate result for CPoppler added to the Sachs-Wolfe result of 
CSacha-wo’fe = 6Cz/l(l+ 1) for standard recombination and no recombination. Also shown I 
are the results of numerically integrating the full set of Boltzmann equations [including 
perturbation to the metric, CDM and three species of massless neutrinos] for these two 
ionization histories. Apparently the approximate result of Eq. (4.16) gives a very good 
qualitative picture of the results we are after: (i) the Doppler peak is larger on large scales 
[small I] and (ii) the damping does take place at larger scales than in the case of standard 
recombination. Clearly, though, for an accurate quantitative analysis the equations must 
be solved numerically. One final quantitative point: Having emphasized the fact that Cl 
is larger in a no-recombination Universe at low I, we should point out that it’s not that 
much larger. The difference never exceeds 30% for any 1. Thus we’ll see in Section 7 that 
the expected AT [which goes as the square root of Cl] for no-recombination is roughly the 
same on these scales as for standard recombination. All our work in this section has been 
on the linear terms in the Boltzmann equation. We now turn to second order terms. 
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5. Second Order Equation 

In this section we write down the second order equation which follows from our general 
Boltzmann treatment in Section 2. It turns out that there are numerous terms. We can 
immediately throw out one class of terms in Eq. (2.11) though. The terms coupling f(l) 
and u, i.e. those in Eq. (2.15), are nominally second order. In practice, though, we have 
seen that f(l) [or its equivalent A(i)] is very small on small scales due to damping. So we 
we can neglect cg? . m Eq. (2.11). The remaining terms can be manipulated as were the 
first order terms in Section 3. The result for the second order collision term is 

C@)(p) = 
IzeUT { 

!e!~epv + p + lf’*‘p*(p) - f(2) 
-p aP 2 * 

* af’o’ 
+vp ap 

-(j? + 1) + .*p2F($2 + $, 

+-gJp4(dg + f@)(l + f(O)) 
e )I) 

(5.1) 

The first term on the right hand side arises from writing the electron density as n, = 
5.(1 + 6,) and then multiplying the first order collision terms (Eq. (3.18)) by 6. [note 
that we have dropped all terms with f(l)’ s in them]. This is the so-called “Vishniac 
term”. The remaining terms arise from the second order expansion in the collision integral, 
Eq. (2.11). At second order, electron-photon scattering is not purely elastic. Energy is 
transferred between the electrons and photons, inducing spectral distortions. In the limit 
of no anisotropy only the terms on the last line, the Kompaneets terms which give rise 
to spectral Sunyaev-Zel’dovich distortions, survive. Since the Kompaneets terms do not 
induce anisotropies, we shall neglect them. Finally, since we are interested in scales much 
smaller than the horizon, non-Newtonian gravitational effects can be ignored. 

It would be nice to define a A(*) just as we did A(‘1 in Eq. (3.19) so that the 
second order equation is momentum independent. This is impossible though, because the 
second order equation is momentum dependent! Specifically the ZJ* terms in Eq. (5.1) 
are momentum dependent. Thus in general A(*) will depend on momentum. There are 
two ways to deal with this: Either we can go ahead and try to solve the full equation for 
A(*) (k,p, cc), or we can integrate out the momentum dependence. Let us first take the easy 
way out, and later we will see if it is necessary to include the full momentum dependence. 
To do the integration we can define 

(5.2) 

as in Eq. (3.21). Then integrating Eq. (5.1) leads to the second order equation: 

DA(*) 
F + UP -'~=O~.o,{4s,p.V+v2(7+15(P.~~*) -A(*)}, (5.3) 
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where we have dropped the Ar’ and Ap) terms on the right hand side. as these should 
be irrelevant on small scales. On physical grounds, we can argue that the only important 
second order term is the “Viihniac” term. The Vishniac term is proportional to 6;~ whereas 
the other terms are proportional to v2. By the continuity equation, though, 21 - &/kT. 
Since k7 is quite large (> 100) for the scales of interest, the Vishniac term should dominate. 

Are the other terms in Eq. (5.3) completely irrelevant? Not necessarily. Recall that 
we integrated out the frequency dependence of the velocity squared terms in Eq. (5.1). 
Even if the final value of < (AT/T)2 > induced by these terms was a factor of 100 smaller 
than the leading terms, we might be able to pick them out because of the frequency 
dependence. [A recent example of the process of separating out a signal from a much more 
powerful source with a different “spectral index,” i.e. frequency dependence, can be found 
in Meinhold et a2. (1993).] So we choose to keep these additional terms a little longer. 

6. Second Order Contribution to F 

In this section we will follow the treatment of Efstathiou (1988) in solving the second 
order equation. We can rewrite Eq. (5.3) as 

i(‘) + ikp&c2) = fi.,u~a [Ss”(k, 7) + S&k, 7) - iic2)] 

where the Vishniac source term is 

&,(k, 7) E 4fi c ?(k’, T)&(k - k’, T) 
k’ 

(6.2) 

and the source term quadratic in velocities is 

S,,(k, T) E c [?G(k’, T) +(k - k’,T) + 15fi . +(k’, T)P ?(k - k’, T)] 
k’ 

7k’. (k - k’) + 15fi. k’i, (k - k’) - 
Ik - k’12 k’* 

&(k’, .r&=e(k - k’, rO). 

(6.3) 

Here we have Fourier transformed from position space to momentum space. We have 
also used the facts that (i) the velocities are first order, and are related to the baryon 
density perturbations through the equation of continuity, and (ii) the time dependence of 
the perturbations is given by ie(~) = 6;(~)(g)” in a matter dominated Universe. 

The second order equation is of the same form as the first order equation, whose 
solution we wrote down in Eq. (4.7). By analogy, the solution to the second order equation 
is 

Ac2)(k,p,70) = eeikpro [Sav(k~o)4(k~nd + S&-c,~o)~2(k~~o)] 
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where the time integrals are 

Il(kpO) = ~rodr’(~)39(70,r’)CiiY” 

12(kpo) = ~rod7’(~)2g(ro,r’)e’iyr’ 

with 9 our old friend, the visibility function. We encountered an integral of this form 
[only the powers of 7’ differ] in section 4 when analyzing the first order equation. The 
main lesson we learned was that integrals of this type are strongly damped unless kp is 
small. On small scales [large k] this means that the integrals are non-negligible only if 
g N 0. Thus the main contribution to AC21 can be found by evaluating the Ss,,(?e) and 
Sv,,(re) at /I = 0. Before doing this, let’s go back to Eq. (4.7). There the source term was 
proportional to p, so the contribution of the linear source term was greatly suppressed. 
Vishniac’s profound observation and the origin of the dominance of second order terms is 
that the second order terms Sav and S,, do not vanish at p = 0. 

For the very small angle experiments where second order effects are important, there 
is a simple formula for the Cl’s: 

& (lA(k = +o>d12) 

where V is the volume which will drop out at the end of the calculation. To.derive this, 
start with the small angle formula (Doroshkevich, Zel’dovich. ti Sunyaev 1978): 

C(B,o,=V~mggJ: 44 - ~2)W(k~,To)12)Jo (kW(l - P’)) exp [-(k&a)2] 

(6.7) 
where 0 is the angle between the two observing direction; cr is width of the Gaussian 
beam observing the temperature differences; and R, is the comoving distance to the last 
scattering surface, R, N 70 in a flat universe with .z, > 1. Since (]A(k,c(,re)12) is highly 
peaked around p = 0, we can set p = 0 everywhere else in the integrand. Meanwhile the 
product of Jo and the exponential suppression is just the experimental window function 
referred to in Eq. (1.1). Changing variables to 1 = k/q leads to 

C(tl,(T) = 
64& l-d1 I2 I’: dp (IA(k = [/TO, ~)l~)W,e.,t. (f-5.8) 

Comparing this to the continuous form of Eq. (1.1) leads to Eq. (6.6). Let us now calculate 
the ensemble average (]A( k = ~/TO, p)12): 

(]A(kt~,To)12) =< ]S.~vl’ > III]‘+ < SS~S:, > III,‘+ c S&Svv > ITI2 

+ < IS”“12 > lI# (6.9) 
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We argued above that Ssv/Svv < 10e2, so the last term here is suppressed by a factor 
of at least lo-’ relative to the first and we can safely drop it. The only terms with S,, 
that might be interesting are the cross terms. so we will keep these. Upon squaring S, we 
encounter double sums, say over k’ and k”; thus we need the identity 

< &*(k’)&*(k - k’)&(k”)&(k - k”) >= P(k’)PF - k’) [6k’,k” + &,+k,,.k] (6.10) 

where P is the power spectrum today and 6, the Kronecker delta. We can use this expres- 
sion to expand Eq. (6.9) as 

W(k~>70)12) = v2T02 k, k,, 64 c P(k’)P(k - k’) [6k’,k” + &‘+k”,k] g 

7k’. (k - k’) + 150. k’fi . (k - k’) 
k’2lk - k’12To 

To go further we use the Kronecker deltas to get rid of the k” sum and change the k’ sum 
into an integral via Ck, + VJd3k’/(2a)3. Furthermore, due to the damping effect we 
can set @ . k = n = 0 everywhere except in the time integrals (Ii, Is). Thus, 

W(k, ~7 70)12) = 
64 

Vqy(2iT)3 / 

d3k’ 
Ic’2 P(k’)P(k - k’) i,. k’ $ - 

Ik _1,112 > 

x @,k’(Zl]2+7k’.(k-k’) - 15(P~W21m(zlz;) 
Ik - k’13ro 

With no loss of generality we orient our coordinate system such that: 

k.fi=O; k. k’ = kk’x; k’ i, = k’dmsin$ 

Then 

(IA(k, P,To)I~) = VT;T)3 lrn dk’ J_: dx l’dd P(k’)P((k’ + kf2 - 2kk’x)‘i2) 

x k/-sin+ 
1 

k2 + kt2 - 2kk’x > 

(6.12) 

(6.13) 

X k/-sin 41Zi12 + 
7(kk’x - k’2) - 15k’2 (1 - x2) sin’ C$ 

(k2 + kf2 - 2kk’x)To 

(6.14) 
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We now see that the cross terms - those with ZrZ2 - vanish once the 4 integral is done (Hu 
et al. 1993). Thus we conclude that the only second order term of any significance is the 
Vishniac term. Plugging this expression into Eq. (6.6) yields 

cl = lJp2(k = ~/TO) K(k = L/T~) 
273 

(6.15) 

where 

(6.16) 

J&z 2n J -’ dp IZI(WO)I~ 
1 

For CDM. K. the integral over the power spectrum. can be approximated by K(1) z 
-0.1 + l.l(Z/lOOO) for 1000 < 1 < 5000. with a maximum error of 5%. [The integral K is 
half of the integral Efstathiou (1988) calls Is. It’s also much easier to compute numerically. 
To prove the identity, one uses the invariance of the integrand under k’ t-1 k - k’.] 

FIG. 6. cl’s induced by the second order Vishniac term for CDM with no recombination. 
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The integral J contains all the information about the ionization history. but it also 

appears to depend on wavenumber k. Efstathiou (1988) made the intriguing observation 

that for most reasonable ionization histories, J is in fact independent of Lz. To see this, we 

note that the integrand is sharply peaked around p = 0 so there should be very little error 

introduced if we extend the limits of integration all the way to fco. Then, 

J N & J_m_ d(kPTO) iro d7/ ($) j,,,. +Je+“’ ire dT1’ ( ~)3s(Tu. Tw-ils~r” 
= jy” dT’(~)6y~(To,‘~)7D (6.18) 

where the last equality follows immediately since the (kprs) integral yields a delta function 

in T’ - 7”. All the information about the ionization history is in the integral J. From 

Eq. (6.18), we see that the integrand is heavily towards late times by the rr6 factor. 

Thus ionization histories wherein the visibility function is peaked at late times - that 

is, scenarios in which the Universe is re-ionized - are most likely to produce appreciable 

secondary anisotropies. For standard recombination, J = 1.7 x 10-s while J = 7.3 x 10m5 

for no recombination. 

Figure 6 shows the Cl’s for CDM with no recombination. The shape of the curve is 

exactly the same for other ionization histories, only the amplitude, which is determined 

by J, drops. Nonetheless, since the integrand of J is heavily weighted towards late times, 

even relatively late re-ionization produces a comparable signal. The other feature of note 

in Fig. 6 is the amplitude, which is small. We’ll see in the next section how this trans- 

lates into an expected AT in a given experiment. but clearly it will be difficult to detect 

these secondary anisotropies in CDM. Other cosmologies, in particular baryon isocurva- 

ture models, are more likely to produce a large secondary signal due to the Vishniac effect 

(Bond & Efstathiou 1987; Efstathiou 1988; Hu et al. 1993). Although we won’t calculate 

the signal in these models here, we stress that our conclusion that Vishniac’s term is the 

only important second order one applies in general. 

7. Results and Discussion 

Now that we have all the physics under our belts, it is time to probe different ionization 

histories. In this section we present the Cl’s for a variety of ionization histories and convolve 

them with the filter functions shown in Figure 1 to obtain the predicted signal in these 

experiments. 
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FIG. 7. The visibility functions for the ionization histories we will discuss in this section. Shown for 

comparison are the standard recombination history and the fully ionized history. The small numbers 

alongside each line indicate the redshift of complete ionization. 

Figure 7 shows the visibility functions for the histories we will discuss. Note that the 
ionization in these particular histories is gradual so that even the history wherein ionization 
takes place at z = 10 differs from the standard recombination. The advantage of these 
particular histories is that they were generated in a consistent manner; i.e. a source of 
photons was injected continuously into the medium and the effects of recombination and 
electron heating were taken into account (Dodelson & Jubas 1992). The ionization history 
of the Universe couldhave been as sketched in any of the lines in Figure 7. The disadvantage 
of these histories is that in all of them re-ionization is gradual. We would like to be able 
to say something general about re-ionization without reference to these specific histories. 
Therefore, referring to them by the epoch of complete re-ionization is not a good idea. 

It is more useful to discuss the cumulative visibility function: J,” dr’g(rs, r’); this is 
shown in Figure 8. The cumulative visibility function is the probability that a photon has 
last scattered after a given time. Thus, for a no-recombination Universe, Figure 8 shows 
that almost all photons scattered after r = ,057s. By contrast, the cumulative visibility 
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function is only equal to ,005 at r = .05rs for the standard recombination history. The 
other ionization histories lie somewhere in between. A nice feature of this number [the 
cumulative visibility function at r = .057s] is that it characterizes each ionization history 
in an easily understandable way. Further, it lies between 0 [standard recombination] and 
1 [no recombination] for all reasonable ionization histories. 

No Recombination 

~~ ~~ ‘\ ‘\ ‘\ ‘\ ‘~ ‘~ ‘\ ‘\ 
‘* ‘,‘\ 
.& .& _\ ~~ ~~ ~~ ~~ \\ \\ 

.Jtd, :$ LI 
‘* ‘l 

\\ \\ IS /, jl -.._ *-.. -. ~~ $ 
0 
.Ol .02 .05 .l .2 .5 

T/So 
FIG. 8. The cumulative visibility functions for the ionization histories we will discuss in this section. The 

numbers by each denote the value of the cumulative visibility function when 7 = 0.05ro. 

For each of these histories we have calculated the expected signal in the CMB in the 
form of the Cr’s. Figure 9 shows the results of the numerical integration of the Boltzmann 
equations. Working our way down from standard recombination, we see that if the cumu- 
lative visibility function is small at r = .057s [e.g. the curves labeled .10,.28, and .59], the 
effect of reionization is to damp out the primary anisotropies generated early on. The more 
effective the reionization [LU parametrized by a larger cumulative visibility function], the 
more significant is the damping of the peak at I = 200. Indeed, if most photons scattered 
late [r > .057n], then this peak goes away completely [e.g. the curves labeled .88 and .98], 
as we expect from our discussion in section 4 of the no recombination case. At the same 
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FIG. 9. The cl’s for different ionization histories ranging from standard recombination to no recombina- 

tion. Again the numbers give the value of the cumulative visibility function at -T = ,057~. 

time, though, secondary anisotropies - those generated at late times when velocities were 
larger - become important as reionization becomes more efficient. So for I < 50, Cl is 
actually larger in a Universe which reionizes early. 

We now convolve these Cl’s with the filter functions for the experiments plotted in 
Figure 1. We are interested in the expected signal, as defined in Eq. (1.1). So we plot 

W,2,,,)“* aa a function of the reionization parameter. 
The expected signal in the Tenerife experiment is virtually independent of the ion- 

ization history. We see a small increase in the signal for no-recombination vs. standard 
recombination since the Tenerife filter samples part of the Doppler no-recombination peak. 
But the difference is very small, of order 5%, certainly too small to be meaningful at present. 

The South Pole 91 filter is situated between the standard recombination peak at 
1 N 200 and the no-recombination peak at 1 N 50. Since the former peak has a larger 
amplitude, the signal in SP91 is larger if the Universe had a standard recombination 
history than if it never recombined. It is interesting to note though that the curve is not 
monotonic: If the cumulative visibility function at r = .05rs lay between 0.5 and 1, the 
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FIG. 10. The expected < AT2 >ri2 1x1 a variety of experiments as a function of the reionization 

parameter, the cumulative visibility function at 7 = .&ko. Small values of the cumulative visibility 

function correspond to standard recombination; values close to one correspond to no recombination. The 

signal in OVRO includes the second order Vishniac effect. 

Doppler peak at 1 N 200 is significantly depleted and the secondary peak at 1 N 50 has 
not built up to its maximum value. Thus the expected signal in lnedium scale anisotropy 

experiments is lowest if roughly half the photons last scattered at the standard z N 1100 
and the other half at z N 100. The signal can drop by as much as a factor of two from 
what would be expected in standard recombination. Amusingly, the observed signal in all 
four channels was roughly a factor of two below what would be expected, but this must 
be taken with a gram of salt since there was probably a great deal of contamination from 
foreground sources (Gaier et al. 1992; Dodelson & Jubas 1993). 

The MAX experiment has a filter centered closer to the primary peak at 1 N 200. 
Therefore, the signal drops even more precipitously when the Universe is re-ionized and 
the primary peak is washed out. The signal can be a factor of three smaller than in standard 
recombination. Note again the effect of the secondary peak: as the cumulative visibility 
function reaches one, the secondary peak and. therefore, the signal increases. MAX and 
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SP91 are both very good probes of the ionization history, with the expected signal varying 
by a factor of 2 - 3 depending on the ionization history. 

By far the best probe of ionization histoq is the Owens Volley Radio ObsematomJ 
receiver. Note from Fig. 1 that the OVRO filter does not pick up the secondary peak at 
1 Y 50. So the signal due to first order effects [pre-Vishniac] is completely negligible if the 
Universe never recombined. In fact. the expected signal drops by a factor of order ten if 
the Universe never recombined. This drop is large but it would be even more dramatic if 
not for the Vishniac effect. which produces a small. but non-negligible signal in the case 
of no-recombination when the primary signal has been completely washed out. 

To sum up, Fig. 10 gives meat to the common wisdom that the smallest scale exper- 
iments are most sensitive to the ionization history of the Universe. 

We started this investigation wondering whether a signal due to re-ionization could 
be misinterpreted as a primordial signal. We now know how a signal due to re-ionization 
differs from one due to standard CDM with standard recombination history, and we are 
confident that current and future experiments will probe such differences. What we have 
not done in this paper is explore how a signal due to re-ionization differs from a signal 
in other variants of CDM. Most troublesome are two variants most likely to be confused 
with re-ionization: (i) models where the primordial spectrum is not Harrison-Zel’dovich 
(n < 1) and (ii) models in which there are primordial tensor perturbations due to gravity 
waves (Crittenden et al. 1993). Both of these have the feature that the signal on large 
scales is the same as in standard CDM, while the signal on small scales is smaller than the 
standard one. They share this feature with re-ionized models. Therefore, distinguishing 
tilted or gravity-wave models from re-ionized models is a challenging task for cosmologists. 
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